

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6-Methoxy-1-(4-methoxyphenyl)-1,2,3,4tetrahydro-9H-β-carbolin-2-ium acetate

Teik Beng Goh,^a Mohd Nizam Mordi,^a Sharif Mahsufi Mansor,^a Mohd Mustaqim Rosli^b and Hoong-Kun Fun^{b*}

^aCentre for Drug Research, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 3 April 2012; accepted 17 April 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.056; wR factor = 0.134; data-to-parameter ratio = 25.1.

In the title compound, $C_{19}H_{21}N_2O_2^+ \cdot C_2H_3O_2^-$, the 1*H*-indole ring system is essentially planar [maximum deviation = 0.0257 (14) Å] and forms a dihedral angle of 87.92 (7) Å with the benzene ring attached to the tetrahydropyridinium fragment. The tetrahydropyridinium ring adopts a half-chair conformation. In the crystal, cations and anions are linked by interionic N-H···O, C-H···O and C-H···N hydrogen bonds into chains along the *a* axis.

Related literature

For the biological activity of metal complexes with 6-methoxy-1-methyl-4,9-dihydro-3H-pyrido[3,4-b]indole, see: Al-Allaf et al. (1990); Herraiz et al. (2003). For a related tetrachloridozincate structure, see: Goh et al. (2012). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data $C_{19}H_{21}N_2O_2^+ \cdot C_2H_3O_2^-$

 $M_r = 368.42$

Z = 4Mo $K\alpha$ radiation

 $\mu = 0.09 \text{ mm}^{-1}$

 $0.28 \times 0.24 \times 0.16 \text{ mm}$

T = 100 K

Monoclinic, $P2_1/c$ a = 9.1046 (4) Å b = 19.8837 (8) Å c = 12.0856 (5) Å $\beta = 123.281 \ (3)^{\circ}$ V = 1829.06 (15) Å³

Data collection

Bruker SMART APEXII CCD	21273 measured reflections
area-detector diffractometer	6211 independent reflections
Absorption correction: multi-scan	4350 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2009)	$R_{\rm int} = 0.045$
$T_{\min} = 0.974, \ T_{\max} = 0.985$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$	247 parameters
$wR(F^2) = 0.134$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.42 \text{ e } \text{\AA}^{-3}$
6211 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H1\cdots O3^{i}$	0.93	1.86	2.7762 (15)	169
$N1 - H2 \cdots O3$	0.90	1.93	2.7895 (19)	160
N2-H3···O4 ⁱⁱ	0.97	1.72	2.6800 (18)	171
C9−H9A···O3 ⁱⁱ	0.99	2.52	3.285 (2)	134
$C10-H10A\cdots N1^{i}$	1.00	2.55	3.4038 (19)	143
$C15-H15A\cdots O4^{iii}$	0.95	2.60	3.5073 (19)	160

Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) x - 1, y, z; (iii) -x + 2, -y + 2, -z + 1.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

This work was supported by USM Research University Grant No. 1001/CDADAH/815020 and the R&D Initiative Fund, Ministry of Science, Technology and Innovation, Malaysia (MOSTI). HKF thanks USM for the Research University Grant No. 1001/PFIZIK/811160.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2738).

References

- Al-Allaf, T. A. K., Ayoub, M. T. & Rashan, L. J. (1990). J. Inorg. Biochem. 38, 47-56.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Goh, T. B., Mordi, M. N., Mansor, S. M., Rosli, M. M. & Fun, H.-K. (2012). Acta Cryst. E68, m464-m465.
- Herraiz, T., Galisteo, J. & Chamorro, C. (2003). J. Agric. Food Chem. 51, 2168-2173.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, o1483 [doi:10.1107/S1600536812016753]

6-Methoxy-1-(4-methoxyphenyl)-1,2,3,4-tetrahydro-9*H*-β-carbolin-2-ium acetate

Teik Beng Goh, Mohd Nizam Mordi, Sharif Mahsufi Mansor, Mohd Mustaqim Rosli and Hoong-Kun Fun

Comment

The metal complexes of 6-methoxy-1-methyl-4,9-dihydro-3H- β -carboline and other carboline alkaloids were previously reported to have biological activity (Al-Allaf *et al.* 1990). It is now well established that these class of beta carboline alkaloids may occur under mild conditions in foods from a Pictet-Spengler condensation of indoleamines such as *L*-tryptophan and short aliphatic aldehydes (Herraiz *et al.* 2003). Our present work intend to synthesize this compound and prepare it in salt form to investigate its safety and antiproliferative efficacy in cancer cell line.

All bond lengths and angles in the title compound (Fig. 1) are within normal ranges and comparable with those observed for a related compound recently reported (Goh *et al.*, 2012). The 1*H*-indole ring (C1—C7/C11/N1) is planar with a maximum deviation of 0.0257 (14) Å for atom C11 and forms a dihedral angle of 87.92 (7)° with the C13—C18 benzene ring. The tetrahydropyridinium ring show a half-chair conformation with puckering parameters Q = 0.5216 (16) Å, $\theta = 52.70$ (18)° and $\varphi = 23.4$ (2)°. In the crystal structure, cations and anions are linked by intermolecular N—H…O, C —H…O and C—H…N interactions (Table 1) into one-dimensional chains along the *a* axis (Fig. 2).

Experimental

6-Methoxy-1-(4-methoxyphenyl)-4,9-dihydro-3*H*-β-carboline (2.50 mmol, 770 mg) was dissolved in analytical grade dichloromethane (0.60 ml). Vortex was performed to aid mixing. Glacial acetic acid (99.5%, 2.50 mmol, 145 μ l) was transferred by a micropipette (50–200 μ l) and was then added to the 6-methoxy-1-(4-methoxyphenyl)-4,9-dihydro-3*H*-βcarboline solution dropwise in a 20 ml glass bottle. The side of the glass bottle was scratched with a small spatula and the bottle was kept in fridge at 4° C for 60 days before yielding colourless crystals of 6-methoxy-1-(4-methoxyphenyl)-4,9dihydro-3*H*-β-carbolinium acetate which were filtered off, washed twice with acetone and air-dried. Crystals of the title compound suitable for X-ray diffraction analysis were selected directly from the sample as prepared.

Refinement

N-bound H atoms were located in a difference Fourier map and refined using a riding model with $U_{iso}(H) = 1.2 U_{eq}(N)$. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–1.00 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(C)$ for methyl H atoms. A rotating group model was applied to the methyl groups.

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication:

SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figure 1

The molecular structure, showing 50% probability displacement ellipsoids. An interionic hydrogen bond is shown as a dashed line.

Figure 2

The crystal packing of the title compound. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen interactions have been omitted for clarity.

6-Methoxy-1-(4-methoxyphenyl)-1,2,3,4-tetrahydro-9*H*-β-carbolin-2-ium acetate

Crystal data	
$C_{19}H_{21}N_{2}O_{2}^{+}C_{2}H_{3}O_{2}^{-}$ $M_{r} = 368.42$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 9.1046 (4) Å b = 19.8837 (8) Å c = 12.0856 (5) Å $\beta = 123.281$ (3)° V = 1829.06 (15) Å ³ Z = 4	F(000) = 784 $D_x = 1.338 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5044 reflections $\theta = 2.5-31.4^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 K Block, colourless $0.28 \times 0.24 \times 0.16 \text{ mm}$
Data collection	
Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009) $T_{min} = 0.974$, $T_{max} = 0.985$ 21273 measured reflections 6211 independent reflections

$h = -10 \rightarrow 13$
$k = -25 \rightarrow 29$
$l = -17 \rightarrow 17$
Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0554P)^2 + 0.5954P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.42 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.19801 (14)	0.80635 (6)	-0.51962 (10)	0.0206 (2)	
O2	0.79721 (14)	0.79841 (5)	0.61132 (10)	0.0178 (2)	
N1	0.53529 (15)	0.91336 (6)	-0.01734 (11)	0.0134 (2)	
H2	0.6445	0.9291	0.0400	0.016*	
N2	0.21849 (15)	0.94170 (6)	0.07834 (11)	0.0140 (2)	
H1	0.1712	0.9749	0.0136	0.017*	
Н3	0.2114	0.9561	0.1518	0.017*	
C1	0.47738 (18)	0.88736 (7)	-0.14119 (13)	0.0130 (3)	
C2	0.56016 (19)	0.88480 (7)	-0.20957 (14)	0.0148 (3)	
H2A	0.6767	0.9010	-0.1704	0.018*	
C3	0.46785 (19)	0.85799 (7)	-0.33659 (14)	0.0153 (3)	
H3A	0.5218	0.8559	-0.3851	0.018*	
C4	0.29553 (19)	0.83388 (7)	-0.39423 (14)	0.0147 (3)	
C5	0.21217 (19)	0.83642 (7)	-0.32661 (14)	0.0146 (3)	
H5A	0.0956	0.8201	-0.3663	0.017*	
C6	0.30332 (18)	0.86348 (7)	-0.19869 (13)	0.0121 (3)	
C7	0.25808 (18)	0.87570 (7)	-0.10371 (13)	0.0134 (3)	
C8	0.08984 (18)	0.86327 (8)	-0.11207 (14)	0.0151 (3)	
H8A	0.0532	0.8159	-0.1371	0.018*	
H8B	-0.0039	0.8926	-0.1808	0.018*	
С9	0.11639 (19)	0.87798 (7)	0.02130 (14)	0.0151 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H9A	0.0007	0.8823	0.0103	0.018*
H9B	0.1804	0.8402	0.0828	0.018*
C10	0.40804 (18)	0.93513 (7)	0.12006 (13)	0.0127 (3)
H10A	0.4582	0.9815	0.1352	0.015*
C11	0.40092 (18)	0.90627 (7)	0.00269 (13)	0.0126 (3)
C12	0.2764 (2)	0.80697 (9)	-0.59457 (15)	0.0215 (3)
H12A	0.1941	0.7879	-0.6825	0.032*
H12B	0.3843	0.7801	-0.5489	0.032*
H12C	0.3046	0.8534	-0.6038	0.032*
C13	0.51581 (18)	0.89668 (7)	0.24838 (13)	0.0129 (3)
C14	0.58947 (19)	0.93146 (8)	0.36854 (14)	0.0148 (3)
H14A	0.5734	0.9787	0.3680	0.018*
C15	0.68530 (19)	0.89756 (8)	0.48799 (14)	0.0153 (3)
H15A	0.7354	0.9215	0.5690	0.018*
C16	0.70801 (18)	0.82823 (7)	0.48899 (13)	0.0145 (3)
C17	0.63921 (19)	0.79301 (8)	0.37083 (14)	0.0157 (3)
H17A	0.6572	0.7459	0.3716	0.019*
C18	0.54363 (18)	0.82783 (7)	0.25149 (14)	0.0146 (3)
H18A	0.4965	0.8040	0.1707	0.018*
C19	0.8048 (2)	0.72675 (8)	0.61618 (16)	0.0229 (3)
H19A	0.8605	0.7118	0.7080	0.034*
H19B	0.8737	0.7108	0.5814	0.034*
H19C	0.6855	0.7084	0.5625	0.034*
O3	0.88167 (13)	0.95821 (5)	0.11028 (10)	0.0169 (2)
O4	1.16310 (14)	0.97876 (6)	0.26577 (10)	0.0201 (2)
C20	1.00753 (19)	0.96657 (7)	0.23013 (14)	0.0147 (3)
C21	0.9666 (2)	0.96257 (9)	0.33549 (16)	0.0247 (4)
H21A	1.0766	0.9612	0.4231	0.037*
H21B	0.8984	0.9218	0.3223	0.037*
H21C	0.8984	1.0022	0.3294	0.037*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0193 (5)	0.0309 (6)	0.0152 (5)	-0.0070 (5)	0.0118 (5)	-0.0087 (4)
O2	0.0180 (5)	0.0186 (6)	0.0123 (5)	0.0002 (4)	0.0055 (4)	0.0019 (4)
N1	0.0116 (5)	0.0171 (6)	0.0119 (5)	-0.0026 (5)	0.0068 (5)	-0.0014 (4)
N2	0.0131 (5)	0.0170 (6)	0.0120 (5)	0.0009 (5)	0.0071 (5)	-0.0009 (4)
C1	0.0138 (6)	0.0131 (7)	0.0121 (6)	0.0008 (5)	0.0072 (5)	-0.0006(5)
C2	0.0129 (6)	0.0167 (7)	0.0166 (7)	-0.0008 (5)	0.0091 (6)	0.0000 (5)
C3	0.0168 (7)	0.0168 (7)	0.0172 (7)	-0.0009 (6)	0.0124 (6)	-0.0006 (5)
C4	0.0160 (6)	0.0158 (7)	0.0135 (6)	-0.0011 (6)	0.0090 (6)	-0.0017 (5)
C5	0.0135 (6)	0.0167 (7)	0.0148 (6)	-0.0014 (5)	0.0085 (6)	-0.0015 (5)
C6	0.0122 (6)	0.0129 (7)	0.0124 (6)	0.0008 (5)	0.0075 (5)	0.0010 (5)
C7	0.0134 (6)	0.0157 (7)	0.0134 (6)	0.0000 (5)	0.0088 (5)	-0.0002 (5)
C8	0.0132 (6)	0.0189 (7)	0.0149 (6)	-0.0029 (5)	0.0088 (5)	-0.0029 (5)
C9	0.0130 (6)	0.0186 (7)	0.0159 (6)	-0.0019 (5)	0.0092 (6)	-0.0020 (5)
C10	0.0118 (6)	0.0144 (7)	0.0128 (6)	-0.0005 (5)	0.0073 (5)	-0.0009 (5)
C11	0.0130 (6)	0.0137 (7)	0.0126 (6)	-0.0002 (5)	0.0081 (5)	0.0004 (5)
C12	0.0241 (8)	0.0294 (9)	0.0168 (7)	-0.0058 (7)	0.0149 (7)	-0.0066 (6)

supplementary materials

C13	0.0112 (6)	0.0163 (7)	0.0127 (6)	-0.0008 (5)	0.0077 (5)	0.0005 (5)
C14	0.0151 (6)	0.0146 (7)	0.0159 (6)	-0.0012 (5)	0.0093 (6)	-0.0016 (5)
C15	0.0149 (6)	0.0185 (7)	0.0121 (6)	-0.0037 (5)	0.0072 (5)	-0.0042 (5)
C16	0.0107 (6)	0.0202 (7)	0.0125 (6)	-0.0007 (5)	0.0063 (5)	0.0009 (5)
C17	0.0173 (7)	0.0146 (7)	0.0154 (6)	0.0006 (5)	0.0091 (6)	-0.0004 (5)
C18	0.0160 (6)	0.0155 (7)	0.0124 (6)	-0.0019 (5)	0.0078 (6)	-0.0033 (5)
C19	0.0244 (8)	0.0191 (8)	0.0199 (7)	0.0013 (6)	0.0088 (7)	0.0042 (6)
O3	0.0134 (5)	0.0211 (6)	0.0150 (5)	-0.0002 (4)	0.0071 (4)	-0.0001 (4)
O4	0.0139 (5)	0.0313 (6)	0.0166 (5)	-0.0045 (4)	0.0092 (4)	-0.0069 (4)
C20	0.0152 (6)	0.0157 (7)	0.0152 (6)	0.0003 (5)	0.0097 (6)	-0.0008 (5)
C21	0.0240 (8)	0.0365 (10)	0.0200 (8)	-0.0023 (7)	0.0163 (7)	-0.0010 (7)

Geometric parameters (Å, °)

01—C4	1.3811 (17)	С9—Н9В	0.9900	
O1—C12	1.4283 (17)	C10—C11	1.4982 (18)	
O2—C16	1.3708 (17)	C10—C13	1.5108 (19)	
O2—C19	1.4263 (19)	C10—H10A	1.0000	
N1-C11	1.3784 (17)	C12—H12A	0.9800	
N1—C1	1.3855 (17)	C12—H12B	0.9800	
N1—H2	0.9001	C12—H12C	0.9800	
N2—C9	1.4972 (19)	C13—C18	1.389 (2)	
N2-C10	1.5148 (17)	C13—C14	1.4028 (19)	
N2—H1	0.9296	C14—C15	1.385 (2)	
N2—H3	0.9674	C14—H14A	0.9500	
C1—C2	1.3918 (18)	C15—C16	1.393 (2)	
C1—C6	1.4182 (19)	C15—H15A	0.9500	
С2—С3	1.390 (2)	C16—C17	1.3929 (19)	
C2—H2A	0.9500	C17—C18	1.393 (2)	
C3—C4	1.406 (2)	C17—H17A	0.9500	
С3—НЗА	0.9500	C18—H18A	0.9500	
C4—C5	1.3882 (18)	C19—H19A	0.9800	
С5—С6	1.4001 (19)	C19—H19B	0.9800	
С5—Н5А	0.9500	C19—H19C	0.9800	
C6—C7	1.4371 (18)	O3—C20	1.2717 (17)	
C7—C11	1.3707 (19)	O4—C20	1.2573 (17)	
С7—С8	1.4993 (19)	C20—C21	1.512 (2)	
С8—С9	1.5213 (19)	C21—H21A	0.9800	
C8—H8A	0.9900	C21—H21B	0.9800	
C8—H8B	0.9900	C21—H21C	0.9800	
С9—Н9А	0.9900			
C4—O1—C12	116.63 (11)	C13—C10—N2	111.40 (11)	
C16—O2—C19	117.59 (11)	C11—C10—H10A	107.7	
C11—N1—C1	107.65 (11)	C13—C10—H10A	107.7	
C11—N1—H2	127.8	N2-C10-H10A	107.7	
C1—N1—H2	124.4	C7—C11—N1	110.93 (12)	
C9—N2—C10	112.73 (11)	C7—C11—C10	125.72 (12)	
C9—N2—H1	109.2	N1-C11-C10	123.06 (12)	
C10—N2—H1	105.0	O1—C12—H12A	109.5	

C9—N2—H3	109.6	O1—C12—H12B	109.5
C10—N2—H3	110.9	H12A—C12—H12B	109.5
H1—N2—H3	109.2	O1—C12—H12C	109.5
N1—C1—C2	130.25 (13)	H12A—C12—H12C	109.5
N1—C1—C6	108.34 (11)	H12B—C12—H12C	109.5
C2—C1—C6	121.36 (12)	C18—C13—C14	118.77 (13)
C3—C2—C1	118.27 (13)	C18—C13—C10	122.18 (12)
C3—C2—H2A	120.9	C14—C13—C10	119.04 (13)
C1—C2—H2A	120.9	C15—C14—C13	120.61 (14)
C2—C3—C4	120.81 (12)	C15—C14—H14A	119.7
С2—С3—НЗА	119.6	C13—C14—H14A	119.7
С4—С3—НЗА	119.6	C14—C15—C16	119.76 (13)
O1—C4—C5	115.49 (12)	C14—C15—H15A	120.1
O1—C4—C3	123.33 (12)	C16—C15—H15A	120.1
C5—C4—C3	121.18 (13)	O2—C16—C17	123.73 (13)
C4—C5—C6	118.67 (13)	O2—C16—C15	115.76 (12)
С4—С5—Н5А	120.7	C17—C16—C15	120.50 (13)
С6—С5—Н5А	120.7	C18—C17—C16	119.06 (14)
C5—C6—C1	119.71 (12)	C18—C17—H17A	120.5
C5—C6—C7	133.71 (13)	С16—С17—Н17А	120.5
C1—C6—C7	106.56 (12)	C13—C18—C17	121.27 (13)
С11—С7—С6	106.50 (12)	C13—C18—H18A	119.4
C11—C7—C8	123.00 (12)	C17—C18—H18A	119.4
C6—C7—C8	130.41 (13)	O2—C19—H19A	109.5
С7—С8—С9	109.54 (11)	O2—C19—H19B	109.5
С7—С8—Н8А	109.8	H19A—C19—H19B	109.5
С9—С8—Н8А	109.8	O2—C19—H19C	109.5
С7—С8—Н8В	109.8	H19A—C19—H19C	109.5
С9—С8—Н8В	109.8	H19B—C19—H19C	109.5
H8A—C8—H8B	108.2	O4—C20—O3	123.85 (13)
N2—C9—C8	110.37 (11)	O4—C20—C21	118.25 (13)
N2—C9—H9A	109.6	O3—C20—C21	117.90 (13)
С8—С9—Н9А	109.6	C20—C21—H21A	109.5
N2—C9—H9B	109.6	C20—C21—H21B	109.5
С8—С9—Н9В	109.6	H21A—C21—H21B	109.5
H9A—C9—H9B	108.1	C20—C21—H21C	109.5
C11—C10—C13	116.38 (12)	H21A—C21—H21C	109.5
C11—C10—N2	105.57 (11)	H21B—C21—H21C	109.5
C11—N1—C1—C2	177.32 (15)	C6—C7—C11—N1	-0.96 (16)
C11—N1—C1—C6	-0.18 (15)	C8—C7—C11—N1	-177.99 (13)
N1—C1—C2—C3	-177.32 (14)	C6—C7—C11—C10	173.05 (13)
C6—C1—C2—C3	-0.1 (2)	C8—C7—C11—C10	-4.0 (2)
C1—C2—C3—C4	-0.2 (2)	C1—N1—C11—C7	0.73 (16)
C12—O1—C4—C5	176.19 (13)	C1—N1—C11—C10	-173.47 (13)
C12—O1—C4—C3	-3.9 (2)	C13—C10—C11—C7	108.15 (16)
C2—C3—C4—O1	-179.57 (14)	N2-C10-C11-C7	-15.97 (19)
C2—C3—C4—C5	0.4 (2)	C13—C10—C11—N1	-78.52 (17)
O1—C4—C5—C6	179.77 (13)	N2-C10-C11-N1	157.36 (13)

C3—C4—C5—C6	-0.2 (2)	C11—C10—C13—C18	-26.91 (19)
C4—C5—C6—C1	-0.1 (2)	N2-C10-C13-C18	94.16 (15)
C4—C5—C6—C7	177.79 (15)	C11—C10—C13—C14	153.50 (12)
N1—C1—C6—C5	178.05 (13)	N2-C10-C13-C14	-85.42 (15)
C2-C1-C6-C5	0.3 (2)	C18—C13—C14—C15	-1.2 (2)
N1—C1—C6—C7	-0.39 (15)	C10-C13-C14-C15	178.38 (12)
C2—C1—C6—C7	-178.16 (13)	C13—C14—C15—C16	-0.4 (2)
C5—C6—C7—C11	-177.31 (16)	C19—O2—C16—C17	-6.2 (2)
C1—C6—C7—C11	0.82 (16)	C19—O2—C16—C15	172.50 (13)
C5—C6—C7—C8	-0.6 (3)	C14—C15—C16—O2	-176.91 (12)
C1—C6—C7—C8	177.54 (14)	C14—C15—C16—C17	1.8 (2)
C11—C7—C8—C9	-9.9 (2)	O2—C16—C17—C18	177.02 (13)
C6—C7—C8—C9	173.87 (14)	C15—C16—C17—C18	-1.6 (2)
C10-N2-C9-C8	-69.07 (14)	C14—C13—C18—C17	1.4 (2)
C7—C8—C9—N2	43.56 (16)	C10-C13-C18-C17	-178.14 (13)
C9—N2—C10—C11	51.16 (14)	C16—C17—C18—C13	-0.1 (2)
C9—N2—C10—C13	-76.04 (14)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N2—H1···O3 ⁱ	0.93	1.86	2.7762 (15)	169
N1—H2…O3	0.90	1.93	2.7895 (19)	160
N2—H3····O4 ⁱⁱ	0.97	1.72	2.6800 (18)	171
С9—Н9А…ОЗ ^{іі}	0.99	2.52	3.285 (2)	134
C10—H10A···N1 ⁱ	1.00	2.55	3.4038 (19)	143
C15—H15A····O4 ⁱⁱⁱ	0.95	2.60	3.5073 (19)	160

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*; (ii) *x*-1, *y*, *z*; (iii) -*x*+2, -*y*+2, -*z*+1.